257 research outputs found

    On the completeness of impulsive gravitational wave space-times

    Full text link
    We consider a class of impulsive gravitational wave space-times, which generalize impulsive pp-waves. They are of the form M=N×R12M=N\times\mathbb{R}^2_1, where (N,h)(N,h) is a Riemannian manifold of arbitrary dimension and MM carries the line element ds2=dh2+2dudv+f(x)δ(u)du2ds^2=dh^2+ 2dudv+f(x)\delta(u)du^2 with dh2dh^2 the line element of NN and δ\delta the Dirac measure. We prove a completeness result for such space-times MM with complete Riemannian part NN.Comment: 13 pages, minor changes suggested by the referee

    Overexpression of melanoma inhibitory activity (MIA) enhances extravasation and metastasis of A-mel 3 melanoma cells in vivo

    Get PDF
    The secreted MIA protein is strongly expressed by advanced primary and metastatic melanomas but not in normal melanocytes. Previous studies have shown that MIA serum levels correlate with clinical tumour progression in melanoma patients. To provide direct evidence that MIA plays a role in metastasis of malignant melanomas, A-mel 3 hamster melanoma cells were transfected with sense- and antisense rhMIA cDNA and analysed subsequently for changes in their tumorigenic and metastatic potential. Enforced expression of MIA in A-mel 3 cells significantly increased their metastatic potential without affecting primary tumour growth, cell proliferation or apoptosis rate in hamsters, compared with control or antisense transfected cells. Additionally, MIA overexpressing transfectants showed a higher rate of both tumour cell invasion and extravasation. Cells transfected with MIA antisense generally exerted an opposite response. The above changes in function attributed to the expression of MIA may underlie the contribution of MIA to the malignant phenotype. © 2000 Cancer Research Campaig

    An experimental investigation of a novel iron chelating protoporphyrin IX prodrug for the enhancement of photodynamic therapy (article)

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordThe dataset associated with this article is located in ORE at: http://hdl.handle.net/10871/32090Objectives: Non-melanoma skin cancers are the most frequently occurring type of cancer worldwide. They can be effectively treated using topical dermatological photodynamic therapy (PDT) employing protoporphyrin IX (PpIX) as the active photosensitising agent as long as the disease remains superficial. Novel iron chelating agents are being investigated to enhance the effectiveness and extend the applications of this treatment modality, as limiting free iron increases the accumulation of PpIX available for light activation and thus cell kill. Methods: Human lung fibroblasts (MRC-5) and epithelial squamous carcinoma (A431) cells were treated with PpIX precursors (aminolaevulinic acid (ALA) or methyl-aminolevulinate (MAL)) with or without the separate hydroxypyridinone iron chelating agent (CP94) or alternatively, the new combined iron chelator and PpIX producing agent, AP2-18. PpIX fluorescence was monitored hourly for 6 hours prior to irradiation. PDT effectiveness was then assessed the following day using the lactate dehydrogenase and neutral red assays. Results: Generally, iron chelation achieved via CP94 or AP2-18 administration significantly increased PpIX fluorescence. ALA was more effective as a PpIX-prodrug than MAL in A431 cells, corresponding with the lower PpIX accumulation observed with the latter congener in this cell type. Addition of either iron chelating agent consistently increased PpIX accumulation but did not always convey an extra beneficial effect on PpIX-PDT cell kill when using the already highly effective higher dose of ALA. However, these adjuvants were highly beneficial in the skin cancer cells when compared with MAL administration alone. AP2-18 was also at least as effective as CP94 + ALA/MAL coadministration throughout and significantly better than CP94 supplementation at increasing PpIX fluorescence in MRC5 cells as well as at lower doses where PpIX accumulation was observed to be more limited. Conclusions: PpIX fluorescence levels, as well as PDT cell kill effects on irradiation can be significantly increased by pyridinone iron chelation, either via the addition of CP94 to the administration of a PpIX precursor or alternatively via the newly synthesised combined PpIX prodrug and siderophore, AP2-18. The effect of the latter compound appears to be at least equivalent to, if not better than, the separate administration of its constituent parts, particularly when employing MAL to destroy skin cancer cells. AP2-18 therefore warrants further detailed analysis, as it may have 3 the potential to improve dermatological PDT outcomes in applications currently requiring enhancement.The authors wish to thank Professor Hider (King’s College London, UK) for synthesising CP94. The financial support of the Medical Research Council (MRC, UK) and Killing Cancer (UK) is very gratefully acknowledged

    Geodesic deviation in pp-wave spacetimes of quadratic curvature gravity

    Full text link
    We write the equation of geodesic deviations in the spacetime of pppp-waves in terms of the Newman-Penrose scalars and apply it to study gravitational waves in quadratic curvature gravity. We show that quadratic curvature gravity pppp-waves can have a transverse helicity-0 polarization mode and two transverse helicity-2 general relativity-like wave polarizations. A concrete example is given in which we analyze the wave polarizations of an exact impulsive gravitational wave solution to quadratic curvature gravity.Comment: 16 pages, no figures, accepted in Physical Review

    Coupling a Point-Like Mass to Quantum Gravity with Causal Dynamical Triangulations

    Full text link
    We present a possibility of coupling a point-like, non-singular, mass distribution to four-dimensional quantum gravity in the nonperturbative setting of causal dynamical triangulations (CDT). In order to provide a point of comparison for the classical limit of the matter-coupled CDT model, we derive the spatial volume profile of the Euclidean Schwarzschild-de Sitter space glued to an interior matter solution. The volume profile is calculated with respect to a specific proper-time foliation matching the global time slicing present in CDT. It deviates in a characteristic manner from that of the pure-gravity model. The appearance of coordinate caustics and the compactness of the mass distribution in lattice units put an upper bound on the total mass for which these calculations are expected to be valid. We also discuss some of the implementation details for numerically measuring the expectation value of the volume profiles in the framework of CDT when coupled appropriately to the matter source.Comment: 26 pages, 9 figures, updated published versio

    Space-time extensions II

    Full text link
    The global extendibility of smooth causal geodesically incomplete spacetimes is investigated. Denote by γ\gamma one of the incomplete non-extendible causal geodesics of a causal geodesically incomplete spacetime (M,gab)(M,g_{ab}). First, it is shown that it is always possible to select a synchronised family of causal geodesics Γ\Gamma and an open neighbourhood U\mathcal{U} of a final segment of γ\gamma in MM such that U\mathcal{U} is comprised by members of Γ\Gamma, and suitable local coordinates can be defined everywhere on U\mathcal{U} provided that γ\gamma does not terminate either on a tidal force tensor singularity or on a topological singularity. It is also shown that if, in addition, the spacetime, (M,gab)(M,g_{ab}), is globally hyperbolic, and the components of the curvature tensor, and its covariant derivatives up to order k1k-1 are bounded on U\mathcal{U}, and also the line integrals of the components of the kthk^{th}-order covariant derivatives are finite along the members of Γ\Gamma---where all the components are meant to be registered with respect to a synchronised frame field on U\mathcal{U}---then there exists a CkC^{k-} extension Φ:(M,gab)(M^,g^ab)\Phi: (M,g_{ab}) \rightarrow (\widehat{M},\widehat{g}_{ab}) so that for each γˉΓ\bar\gamma\in\Gamma, which is inextendible in (M,gab)(M,g_{ab}), the image, Φγˉ\Phi\circ\bar\gamma, is extendible in (M^,g^ab)(\widehat{M},\widehat{g}_{ab}). Finally, it is also proved that whenever γ\gamma does terminate on a topological singularity (M,gab)(M,g_{ab}) cannot be generic.Comment: 42 pages, no figures, small changes to match the published versio

    Deflection of Highly Relativistic Particles in a Gravitational Field

    Full text link
    A novel approach to the calculation of the deflection of highly relativistic test particles in gravitational fields is described. We make use of the light-like boosts of the gravitational fields of the sources. Examples are given of the deflection of highly relativistic particles in the Schwarzschild and Kerr gravitational fields, in the field of a static, axially symmetric, multipole source and in the field of a cosmic string. The deflection of spinning particles is also discussed.Comment: 18 pages, 2 figures, accepted for publication in Classical and Quantum Gravit

    Using automated vegetation cover estimation from close-range photogrammetric point clouds to compare vegetation location properties in mountain terrain

    Get PDF
    In this paper we present a low-cost approach to mapping vegetation cover by means of high-resolution close-range terrestrial photogrammetry. A total of 249 clusters of nine 1 m2 plots each, arranged in a 3 × 3 grid, were set up on 18 summits in Mediterranean mountain regions and in the Alps to capture images for photogrammetric processing and in-situ vegetation cover estimates. This was done with a hand-held pole-mounted digital single-lens reflex (DSLR) camera. Low-growing vegetation was automatically segmented using high-resolution point clouds. For classifying vegetation we used a two-step semi-supervised Random Forest approach. First, we applied an expert-based rule set using the Excess Green index (ExG) to predefine non-vegetation and vegetation points. Second, we applied a Random Forest classifier to further enhance the classification of vegetation points using selected topographic parameters (elevation, slope, aspect, roughness, potential solar irradiation) and additional vegetation indices (Excess Green Minus Excess Red (ExGR) and the vegetation index VEG). For ground cover estimation the photogrammetric point clouds were meshed using Screened Poisson Reconstruction. The relative influence of the topographic parameters on the vegetation cover was determined with linear mixed-effects models (LMMs). Analysis of the LMMs revealed a high impact of elevation, aspect, solar irradiation, and standard deviation of slope. The presented approach goes beyond vegetation cover values based on conventional orthoimages and in-situ vegetation cover estimates from field surveys in that it is able to differentiate complete 3D surface areas, including overhangs, and can distinguish between vegetation-covered and other surfaces in an automated manner. The results of the Random Forest classification confirmed it as suitable for vegetation classification, but the relative feature importance values indicate that the classifier did not leverage the potential of the included topographic parameters. In contrast, our application of LMMs utilized the topographic parameters and was able to reveal dependencies in the two biomes, such as elevation and aspect, which were able to explain between 87% and 92.5% of variance

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    Ecological Indicator Values for Europe (EIVE) 1.0

    Get PDF
    Aims: To develop a consistent ecological indicator value system for Europe for five of the main plant niche dimensions: soil moisture (M), soil nitrogen (N), soil reaction (R), light (L) and temperature (T). Study area: Europe (and closely adjacent regions). Methods: We identified 31 indicator value systems for vascular plants in Europe that contained assessments on at least one of the five aforementioned niche dimensions. We rescaled the indicator values of each dimension to a continuous scale, in which 0 represents the minimum and 10 the maximum value present in Europe. Taxon names were harmonised to the Euro+Med Plantbase. For each of the five dimensions, we calculated European values for niche position and niche width by combining the values from the individual EIV systems. Using T values as an example, we externally validated our European indicator values against the median of bioclimatic conditions for global occurrence data of the taxa. Results: In total, we derived European indicator values of niche position and niche width for 14,835 taxa (14,714 for M, 13,748 for N, 14,254 for R, 14,054 for L, 14,496 for T). Relating the obtained values for temperature niche position to the bioclimatic data of species yielded a higher correlation than any of the original EIV systems (r = 0.859). The database: The newly developed Ecological Indicator Values for Europe (EIVE) 1.0, together with all source systems, is available in a flexible, harmonised open access database. Conclusions: EIVE is the most comprehensive ecological indicator value system for European vascular plants to date. The uniform interval scales for niche position and niche width provide new possibilities for ecological and macroecological analyses of vegetation patterns. The developed workflow and documentation will facilitate the future release of updated and expanded versions of EIVE, which may for example include the addition of further taxonomic groups, additional niche dimensions, external validation or regionalisation
    corecore